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Abstract  

   The present study examined the beta band electroencephalographic functional connectivity between various brain regions during 
different stages of spatial navigation: Planning of route, Navigation through a virtual maze, and Recall of travelled path, for navigators 
classified as good or bad. Coherence was used to compute functional connectivity. A graph theoretical analysis was used to quanti-
fy the organizational features of functional networks at each stage in order to identify key topological differences due to different 
stages or individual differences. The results reveal a reduction in the indices of modularity and small worldness during Navigation 
in comparison to the indices at Rest and the radius was significantly higher during Planning as compared to Navigation and Recall. 
Additionally, the highest degree and transitivity were observed for good navigators as compared to higher the global efficiency for 
poor navigators. Altogether, these results suggest that different stages of a spatial navigation task as well as differences in naviga-
tional abilities induce significant changes in the functional connectivity, that can be measured using coherence and graph theoretical 
analyses.
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Introduction
This study computed functional connectivity [1] in the beta fre-

quency band of EEG data during different stages of spatial navi-
gation: Planning of tentative route, Navigation through a virtual 
maze, and Recall of the path taken. Numerous studies have re-
vealed a parallel mode of activity in multiple cortical areas during 
a large array of cognitive processes [2-6]. Pursuing similar lines of 
thought, it can be assumed that vast changes in information flow 
will occur between different stages of spatial navigation (Plan-
ning, Navigation and Recall) since they present different objectives 
and consequently entail varying levels of cognitive effort from the 

subjects. In order to explore this assumption, we investigated the 
changes in functional connectivity of EEG channels between stages.

Functional connectivity networks are implicated in cognitive 
functioning [7] and may form the physiological basis of information 
processing and mental representations [8]. Subsequently, the topo-
logical architecture of these functional connectivity networks was 
quantified using several well-defined graph theory metrics. Coher-
ence [9] was used to compute functional connectivity in the beta 
band between all pair-wise combinations of EEG channels. It has 
been used as a functional connectivity measure in many research 
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fields, including physiology [10], neurological disorders [11] and 
exercise physiology [12]. Coherence [9] was used to compute func-
tional connectivity in beta band between all pair-wise combinations 
of EEG channels. Coherence is defined as the measure of synchro-
nization between two brain regions in terms of spectral density. 
The current study applied a nonparametric approach: MATLAB’s 
‘mscohere’ algorithm which is based on Welch’s averaged modified 
periodogram method [13]. The Welch estimator can be computed 
by Fast Fourier Transform (FFT) and is commonly used in spectral 
estimation. Understanding the propagation of EEG signals is es-
sential in order to determine the information flow between brain 
regions and the level of their connectivity.

The theta and gamma band activity during spatial navigation 
and retrieval have been explored quite extensively [14-18], how-
ever, the potential functional role of beta band oscillations during 
the same is not yet fully understood [19-21]. Low amplitude beta 
waves with multiple and varying frequencies are often associated 
with active, busy or anxious thinking and active concentration [22]. 
In an attempt to correlate varying levels of cognitive processing 
with individual differences in navigation abilities we have exam-
ined the beta band activity.

The novelty of the present study in the context of existing lit-
erature resides in the integration of 64-channel EEG, Oculus Rift 
and Graph Theory to explore the individual differences in spatial 
navigation abilities.

Materials and Method 
Participants 

Electroencephalographic data was obtained from 30 healthy, 
right-handed subjects (25 males and 5 females) with normal or 
corrected-to-normal vision. Informed consent was obtained in 
writing and the research protocol was approved by the Institute of 
Nuclear Medicine and Allied Sciences (INMAS). 

Classification 
In order to rate the navigational abilities of the participants the 

Santa Barbara Sense of Direction (SODS) scale [23] was used. Each 
participant received a score between 1 and 7, with the higher the 
score, the better the perceived sense of direction.

EEG data acquisition 
Continuous EEG data were recorded using the ‘eegoTM’ sports 

amplifier at a frequency range of 0.2-70Hz with 64 Ag/AgCl elec-
trodes on the head-cap in accordance with the 10-20 electrode 
system. The ground electrode was positioned 10% anterior to 
FZ (AFz), with linked earlobes serving as references. Connectiv-
ity on all electrodes was ensured and impedance at all electrodes 
was minimized to below 5kΩ. The amplifier parameters were set 
as follows: input impedance ≥1GOhm, maximum sampling rate = 
1024Hz, sensitivity = 6000 microV/cm, and CMRR ≥100dB.

Virtual maze 
For this experiment, the participants were required to navi-

gate through a brick wall virtual maze of area 282*362 units pro-
grammed in Unity 3D. A wireless joystick was used to manoeuvre 
movement inside the environment. The VM was displayed on the 
Oculus Rift DK2 through MacBook Air, 13-inch screen, processor 
1.4 GHz core i5 with a resolution of 1920x1200 pixels (Figure 1). 

Figure 1: a) Virtual Maze navigation. b) Map for planning  
navigation from start to end point. c) Subject wearing device  

and navigating in the environment.

Experimental design and procedure 
Prior to the experiment the participants were familiarized with 

the immersive experience and controls of the system. The partici-
pants were instructed to navigate a virtual maze (VM) after plan-
ning the route and reach the end destination marked by green ob-
ject.
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The experiment procedure involved continuous recording the 
EEG signals of the subjects during the following four stages of the 
task
•	 Baseline (Rest): Subjects were seated in a relaxed position 

with no active task. 
•	 Planning: Subjects were shown a map of the VM to plan a ten-

tative route so that they could exit the VM in minimum time. 
•	 Navigation: Subjects had to reach destination by travelling 

into VM. 
•	 Recall: On exiting the maze subjects had to draw the path they 

had actually taken on a piece of paper. 

The start and the end time (and hence duration) of each of the 
four stages was recorded using a time stamp mechanism embed-
ded in the game. 

Behaviour measures 
The Unity software automatically measured participant’s po-

sition in x–y coordinates and heading orientation (yaw). These 
data were automatically output into a text file and converted by 
custom software that plotted the navigation path onto a 2D map 
of the space. The software then calculated performance score. Per-
formance score included coordinates of the path traveled by the 
participants, proportions of repetitions, total time taken for navi-
gation, average number of map views, average time spent to view a 
map, number of turns, and total distance covered. ‘Proportions of 
repetitions’ was defined as the ratio of a total number of repetitions 
of the path and the sum of repetitions and non-repetitions of the 
path. ‘Average time spent to view a map’ was an average time spent 
by the participants to view the map. ‘Average number of map views’ 
was defined an average number of times map was viewed during 
way finding from the start-point to the end-point. ‘Total time taken 
for navigation was the time taken from the start-point to the end-
point. Maximum allotted total time was 15 min; but, if participants 
failed to reach the end-point within this time, then the VM auto-
matically disappeared. ‘Number of turns’ was defined as the total 
number of turns taken by participants during way finding.

EEG signal processing
Baseline noise was removed using EEGLAB [24]. Independent 

Component Analysis (ICA) was used to reject artifacts. A notch 
filter was used to remove the artifacts due to the line frequency 
(50Hz). The preprocessed data was converted to a standard matrix 
in MATLAB, which was then separated into each stage of the exper-

iment with the help of sampling frequencies and time stamps for 
the start and end of each stage. The beta-band data was extracted 
from each segment by using the discrete wavelet transform (db4) 
and fifth-order decomposition implemented via MATLAB com-
mands “wavedec” and “wrcoef.” 

Graph Theoretical analysis 
Estimation of functional connectivity and Association matrix
Coherence is used to measure task related functional interac-

tions between brain regions [9]. It is an estimate of the consistency 
of the relative amplitude and phase between signals detected at 
electrodes within a set frequency band. It is a normalized quan-
tity bounded by 0 and 1 (zero implying linear uncorrelation and 
one implying maximum linear correlation). Coherence between all 
pairwise combinations of EEG channels was conventionally rep-
resented in a 64×64 association matrix A = aij where each matrix 
entry aij represents the connection between node i and node j (1≤ 
i, j ≤ 64). Following a commonly undertaken practice to eliminate 
likely false-positives, an arbitrary threshold of 30% was applied to 
eliminate 70% of the weakest connections (Figure 2). 

Figure 2: a) Association Matrix before thresholding showing  
all of the functional connections as evaluated by Coherence.  
B) Association Matrix after 30% thresholding showing the  

strongest 30% connections only (the weakest 70% connections 
have been eliminated).

Network measures and network visualization
The network topologies were characterized using several graph 

theory metrics calculated from the EEGNET toolbox [25]. A net-
work is a mathematical representation of a real-world complex 
system and is defined by a collection of nodes (vertices) and links 
(edges) between pairs of nodes. The diameter of graph is the maxi-
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mum distance between the pair of vertices. A radius of the graph 
exists only if it has the diameter. The minimum among all the maxi-
mum distances between a vertex to all other vertices is considered 
as the radius of the Graph. normalized network density (or cost) 
as a total number of edges in the graph, divided by the maximum 
possible number of edges. The degree is one of the most common 
measures of centrality. Nodes with a high degree are interacting, 
structurally or functionally, with many other nodes in the network. 
Characteristic path length (CPL) of the network is the average 
shortest path length between all pairs of nodes in the network and 
is the most commonly used measure of functional integration. The 
average inverse shortest path length is a related measure known 
as global efficiency. The degree to which the network may be sub-
divided into such clearly delineated and no overlapping groups is 
quantified by a single statistic, modularity. A classical variant of the 
clustering coefficient, known as the transitivity, is normalized col-
lectively. Small-world networks are formally defined as networks 
that are significantly more clustered than random networks yet 
have approximately the same characteristic path length as random 
networks. The detailed formula and definitions of the measures 
can be found in a paper of basic graph theory [8].

Results
Median split classification was applied on scores of SODS and 

participants were classified accordingly (median = 4.5, Good 

Navigator = 12, Bad navigator = 18). Multivariate ANOVA showed 
non-significant differences between behavioral outcomes of par-
ticipants recorded in the virtual maze, F (1,25) = 1.23, p>.05. Good 
navigators exited the maze in relatively lesser time and committed 
fewer errors than the poor navigators (Table 1).

Behaviuoral  
indicators

Good navigator Bad navigator

Mean S.D. Mean S.D.
Properties of repeti-

tion
0.220857 0.179313 0.2106 0.146084

Areas visited once 23.14286 3.907084 25.4 4.694678
Repetitions 5.833333 5.2095 8.8 7.560423

Max time(min) 12.85714 5.248907 15 0
Time taken (sec) 362.1429 218.81 362.4 146.2335

Planning time(sec) 51.85714 20.63581 77.1 41.28062
No. of times map used 38.71429 26.47756 26.5 13.53699

Map viewing time 
(sec)

94.42857 71.08718 83.7 44.94897

Total time 414 238.0336 879 1346.026
Navigation time? 6.428571 3.849198 6.1 2.118962

No. of turns? 14.42857 5.924698 18.1 9.126336

Table 1: Behavioral Parameters.

Stages Subjects  CPL Global  
Efficiency Radius Diameter Highest 

Degree Density Number 
of Nodes 

Small world 
Coefficient 

Number 
of Edges 

Modu-
larity 

Transi-
tivity 

Baseline Good Mean 1.88 0.54 2.43 4.86 36 0.3 64 0.13 602.14 0.33 0.46 
S.D. 0.26 0.08 0.73 1.36 1.41 0 0 0.14 4.22 0.07 0.17 

Bad Mean 1.89 0.61 2.5 4.5 34.1 0.3 64 0.25 598.4 0.34 0.3 
S.D. 0.13 0.04 0.67 1.02 1.58 0 0 0.13 4.78 0.07 0.13 

Naviga-
tion 

Good Mean 1.86 0.53 2.43 4.57 37.43 0.3 64 0.09 606.14 0.29 0.5 
S.D. 0.15 0.06 0.49 0.49 2.44 0 0 0.1 6.01 0.08 0.11 

Bad Mean 1.83 0.58 2.4 4.1 33.9 0.3 64 0.15 602.2 0.3 0.34 
S.D. 0.13 0.07 0.49 0.54 2.26 0 0 0.18 6.05 0.05 0.1 

Planning Good Mean 2.02 0.55 3.14 5.29 39 0.3 64 0.13 602.29 0.31 0.46 
S.D. 0.21 0.06 0.64 0.88 2.73 0 0 0.08 6.47 0.07 0.11 

Bad Mean 1.91 0.57 2.7 4.7 35.3 0.3 64 0.15 602.1 0.29 0.35 
S.D. 0.14 0.07 0.46 0.64 3.35 0 0 0.13 4.46 0.09 0.1 

Recall Good Mean 1.87 0.51 2.14 5.14 37.71 0.3 64 0.06 601 0.3 0.55 
S.D. 0.23 0.08 0.35 1.55 1.98 0 0 0.11 4.93 0.11 0.16 

Bad Mean 1.91 0.6 2.6 4.3 33.7 0.3 64 0.11 599.1 0.35 0.35 
S.D. 0.14 0.03 0.49 0.46 3.41 0 0 0.21 6.28 0.07 0.14 

Table 2: Graph Theory Parameters.
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Figure 3: Strong intra-network connectivity profiles were  
observed for good navigators as opposed to poor navigators in 
all the three task stages. Note the appearance of more cluttered 

brighter pixels in case of good navigators.

Figure 4: Mean Brain Network of all the participants during (a) 
Baseline and (b) Navigation. The color varying parameter of the 
nodes is ‘Module’. All nodes belonging to one Module are of the 
same color. As is evident from the figures, the brain network during 
Baseline is more Modular (i.e., having greater number of modules) 

than the brain network during Navigation.

Figure 5: a) Mean Transitivity and b) Mean highest degree. Good 
navigators have higher transitivity and degree compared to bad 

navigators.

Results showed strong intra-network connectivity profiles for 
good navigators as opposed to poor navigators (Figure 3). All net-
work measures are summarized in the Table 2. Univariate ANOVA 

on the graph parameters showed significant differences in Radius 
between three stages: Planning, Navigation, and Recall, F (2,22) = 
4.303, p<.01. The radius was higher during Planning than that dur-
ing Navigation and Recall. Paired sample t-test was applied on the 
graph measures between all the stages taken pairwise at a time. It 
was found that both modularity and small world index decreased 
during Navigation in comparison to the indices during Baseline. In 
good navigators, modularity, t (11) = 2.352, p<.05, Small world in-
dex, t (11) = 2.46, p<.05 had shown significant differences; where-
as in bad navigators, modularity, t (17) = 2.512, p<.05, small world 
index, t (17) = 2.656, p<.05, had shown significant differences 
(Figure 4). Also, the good navigators had higher transitivity and 
degree than their counterparts. Between group analysis revealed, 
significant highest degree, F (1,25) = 8.303, p<.05, and transitivity, 
F (1,25) = 7.790, p<.05in good navigators (Figure 5).

Discussion
In the present study, we analyzed functional connectivity net-

works during Planning, Navigation, and Recall stages, taking into 
account individual differences in navigation ability. Beta band was 
chosen to be explored further because of its relevance and limited 
exploration in navigation. Since association matrices by themselves 
were not sufficient to assess the dynamic changes in brain network 
interactions, we employed graph theory to elucidate quantifi-
able differences in functional networks. Results revealed that the 
mean highest degree of good navigators was significantly higher 
than that of bad navigators, implying greater centrality and influ-
ence over the network as compared to the networks of bad naviga-
tors. Moreover, the mean transitivity was also higher in the case 
of good navigators as compared to bad navigators. Higher transi-
tivity in good navigators suggests a proclivity towards segregated 
neural processing, i.e., a preference to be arranged in clusters or 
densely and mutually interconnected neighborhoods. At this point, 
it is compelling to mention that although the widely used index of 
global efficiency failed to significantly differentiate between good 
and bad navigators, its value for good navigators was consistently 
lower than that for bad navigators throughout all the stages. The 
trend in bad navigators toward more globally efficient networks 
may appear counter-intuitive. The positive relationship between 
cognitive load and global integration [26], on the other hand, sup-
ported the theory that greater cognitive load experienced by poor 
navigators resulted in a reorganization of their brain networks 
towards a more globally integrated pattern. When combined with 
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